DIFFERENTIATION

1 A curve has parametric equations

$$
\begin{equation*}
x=t^{2}, \quad y=\frac{2}{t} . \tag{3}
\end{equation*}
$$

a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
b Find an equation for the normal to the curve at the point where $t=2$, giving your answer in the form $y=m x+c$.

2 A curve has the equation $y=4^{x}$.
Show that the tangent to the curve at the point where $x=1$ has the equation

$$
\begin{equation*}
y=4+8(x-1) \ln 2 \tag{4}
\end{equation*}
$$

3 A curve has parametric equations

$$
\begin{equation*}
x=\sec \theta, \quad y=\cos 2 \theta, \quad 0 \leq \theta<\frac{\pi}{2} . \tag{4}
\end{equation*}
$$

a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 \cos ^{3} \theta$.
b Show that the tangent to the curve at the point where $\theta=\frac{\pi}{6}$ has the equation

$$
\begin{equation*}
3 \sqrt{3} x+2 y=k \tag{4}
\end{equation*}
$$

where k is an integer to be found.
4 A curve has the equation

$$
2 x^{2}+6 x y-y^{2}+77=0
$$

and passes through the point $P(2,-5)$.
a Show that the normal to the curve at P has the equation

$$
\begin{equation*}
x+y+3=0 \tag{6}
\end{equation*}
$$

b Find the x-coordinate of the point where the normal to the curve at P intersects the curve again.

5

The diagram shows the curve with parametric equations

$$
x=\theta-\sin \theta, \quad y=\cos \theta, \quad 0 \leq \theta \leq 2 \pi
$$

a Find the exact coordinates of the points where the curve crosses the x-axis.
b Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\cot \frac{\theta}{2}$.
c Find the exact coordinates of the point on the curve where the tangent to the curve is parallel to the x-axis.

6 A curve has parametric equations

$$
x=\sin \theta, \quad y=\sec ^{2} \theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}
$$

The point P on the curve has x-coordinate $\frac{1}{2}$.
a Write down the value of the parameter θ at P.
b Show that the tangent to the curve at P has the equation

$$
\begin{equation*}
16 x-9 y+4=0 \tag{6}
\end{equation*}
$$

c Find a cartesian equation for the curve.
7 A curve has the equation

$$
\begin{equation*}
2 \sin x-\tan 2 y=0 \tag{4}
\end{equation*}
$$

a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cos x \cos ^{2} 2 y$.
b Find an equation for the tangent to the curve at the point $\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$, giving your answer in the form $a x+b y+c=0$.

8

A particle moves on the ellipse shown in the diagram such that at time t its coordinates are given by

$$
\begin{equation*}
x=4 \cos t, \quad y=3 \sin t, \quad t \geq 0 \tag{3}
\end{equation*}
$$

a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
b Show that at time t, the tangent to the path of the particle has the equation

$$
\begin{equation*}
3 x \cos t+4 y \sin t=12 \tag{3}
\end{equation*}
$$

c Find a cartesian equation for the path of the particle.
9 The curve with parametric equations

$$
x=\frac{t}{t+1}, \quad y=\frac{2 t}{t-1}
$$

passes through the origin, O.
a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2\left(\frac{t+1}{t-1}\right)^{2}$.
b Find an equation for the normal to the curve at O.
c Find the coordinates of the point where the normal to the curve at O meets the curve again.
d Show that the cartesian equation of the curve can be written in the form

$$
\begin{equation*}
y=\frac{2 x}{2 x-1} \tag{4}
\end{equation*}
$$

